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COMPACT CONFORMALLY FLAT
RIEMANNIAN MANIFOLDS

SHUKICHI TANNO

1. Introducﬁon

Sufficient conditions for a conformally flat Riemannian manifold to be a space
of constant curvature were given by M. Tani [15] and S. I. Goldberg [5], etc.
In this paper we study compact conformally flat Riemannian manifolds with
finite fundamental group, and obtain the following theorems. Throughout this
paper manifolds are assumed to be connected, of class C*, and of dimension
m> 3.

Theorem A. Let (M™, g) be a compact conformally flat Riemannian mani-
fold with finite fundamental group. If the scalar curvature S of (M™, g) is con-
stant, then S is positive and (M™, g) is of constant curvature.

If a complete Riemannian manifold (M™, g) is of positive Ricci curvature
(=e>0), M™ is compact and has finite fundamental group (S. B. Myers [10]).
Hence, as a natural consequence of Theorem A, we have M. Tani’s theorem:

Corollary [15]. Let (M™,g) be a compact orientable conformally flat
Riemannian manifold. Then (M™, g) is of constant curvature if its Ricci curva-
ture is positive and scalar curvature is constant.

By §™(K) we denote a Euclidean m-sphere of constant curvature K.

Theorem B. Let (M™, ) be a compact conformally flat Riemannian mani-
fold with finite fundamental group and constant scalar curvature S. If (M™, g)
admits a nonisometric conformal transformation, then (M™, g) is isometric to
S™(K) where K = S/[m(m — 1)].

It is well known that there are no harmonic p-forms for 0 < p<mon a
compact orientable conformally flat Riemannian manifold (3™, g) of positive
Ricci curvature; thus (M™, g) is a rational homology sphere ([3], [9], see also
[18, Theorem 4.1]). A more precise statement is as follows.

If a complete conformally flat Riemannian manifold (M™, g) is of positive
Ricci curvature (>e>0), then the universal covering Riemannian manifold
(*M™, *2) of (M™, @) is conformorphic to S™(1).

With respect to this we have

Theorem C. The following three are equivalent:

(i) Onacompact conformally flat Riemannian manifold (M™, g) wzzh finite
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fundamental group, we have a conformally related Riemannian metric g* of
constant curvature.

(ii) On a compact conformally flat Riemannian manifold (M™, g) with
finite fundamental group, we have a conformally related Riemannian metric g*
whose scalar curvature is constant.

(i) For a finite group {g, = identity, ¢, - - -, ¢x_,} of conformal transfor-
mations acting on S™(1) without fixed point, there are a conformal transfor-
mation § and isometries ¢, on S™(1) suchthat o, =67 -¢;-6, i=1, .-,k — 1.

With respect to the integral of the scalar curvature, we have

Theorem D. Let (M™, g) be a compact conformally flat Riemannian mani-
fold with finite fundamental group. Then

f5dM>o,
M

where dM denotes the volume element of (M,™g).

2. Proof of theorems

To prove our theorems we need to apply the following lemmas.

Lemma 1 (Kuiper [7]). A conformally flat simply connected Riemannian
manifold (M™, g) is conformorphic to an open submanifold of S™(1). In particu-
lar, if M™ is compact, then (M™, g)is comformorphic to S™(1).

Lemma 2 (Obata [12, Theorem 11). There is no conformal transformation
between compact (M™, g) of constant scalar curvature S > 0 and ("M™,’g) of
constant scalar curvature 'S < 0 except for S = 'S = 0.

Lemma 3 (Obata [14, Proposition 6.1]). Let g, be the Riemannian metric
of S™(1), and g* another Riemannian metric on S™ conformal to g,. Then g*
has constant scalar curvature S* = m(m — 1) if and only if g* has constant
curvature 1.

Lemma 4 (Nagano [11]). Let (M™,g), m > 3, be a complete Riemannian
manifold with parallel Ricci tensor. If (M™,g) admits a conformal transfor-
mation f, then one of the three cases occurs: (1) f is an isometry, (2) f is
homothetic, and (M™, @) is isometric to the Euclidean space, (3) (M™,g) is
isometric to S™(K).

Lemma 5 (Trudinger [14, Theorem 2, Corollary 1]). Let (M™,g) be a
compact Riemannian manifold with nonpositive total scalar curvature, i.e.,

MdeMgO,

and m > 3. Then there is a conformally related Riemannian metric g* whose
scalar curvature is nonpositive and constant.
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Proof of Theorem A. Let (*M™,%g) be the universal covering Riemannian
manifold of (M™, g). Since the fundamental group of M™ is finite, M™ is com-
pact. Since by the hypothesis (*M™, “g) has constant scalar curvature *S = §,
by Lemma 1 we have a conformal diffeomorphism f of (*M™, %¢) to $%(1), and
therefore by Lemma 2 the scalar curvature S cannot be nonpositive. If we
consider a homothetic deformation g— [S/(m(m — 1))lg, it follows that
[S/(m(m — 1))]g has constant scalar curvature m(m — 1). Now define a
Riemannian metric g* on S™ by g* = [S/(m(m — 1))If"***¢. Then g* is con-
formal to g, and §* = m(m — 1). By Lemma 3, g* is of constant curvature 1,
so that *g and hence g are of constant curvature S/[m(m — 1)].

Proof of Theorem B. By S we denote the scalar curvature of (M™, g). Then
(M™, g) is of positive constant curvature K = S/[m(m — 1)] by Theorem A,
and is isometric to S™(K) by Lemma 4.

Proof of Theorem C. (i) = (ii) is obvious.

We prove (i) = (iii). Let G = {¢y, ¢1, - - -» ¢x_,} be a finite group of con-
formal transformations on $™(1) acting without fixed point. Since G is a com-
pact group, we have a conformally related Riemannian metric g’ such that G
is isometric with respect to g’ (cf. Ishihara [6], more precisely, (g). = {g. +
(0¥ + « -+ + (@F):)/k,xe S™). (S™, g) is factorized by G and we get a
Riemannian manifold (M™, g’). Denote the projection by =. Because (M™, g")
is compact conformally flat with finite fundamental group, by (ii) we have a
conformally related Riemannian metric g* whose scalar curvature S* is con-
stant, so that we can assume that $* = m(m — 1). Denoting z*g* by g* again,
(S™, g*) is the universal covering Riemannian manifold of (M™, g*). Since ¢,
induces an isometry ¢} of (™, g¥), ¢’: x € (S™, g)) — x € (§™, g*) is a conformal
transformation, and therefore 6”: (§™, g,) — (S™, g’) — (8™, g*) is also so. Thus
we have ¢; = 0" *-¢F-¢”, i=1,...,k — 1. By Lemma 3, (§™,g*) is of
constant curvature 1. Hence we obtain an isometry y:(S™, g*) — (5™, g,).
Putting @ = y-0"” and ¢; = 7-¢¥ -7, we have o, = 67*-¢,-6.

Finally we prove (iii) = (i). Let (M™, g) be a compact conformally flat
Riemannian manifold with finite fundamental group G, and (*M™,*g) its uni-
versal covering Riemannian manifold. Then we have a conformal transfor-
mation ' of (*M™,*%g) to S™(1). Let §, ¢ G be a covering transformation, and
put ¢ = f'-&;-'~*. Then ¢ is conformal with respect to g, on S™(1). By (iii)
we have a conformal transformation ¢ and isometries ¢, on S™(1) such that
g.=0"¢,-8 for i=1,-.-,k — 1. Thus by defining ¢; by f-&;-f* for f =
0-f', we obtain ¢, = f- &,-f! = 0-¢}.07! = ¢, = isometry. Now we show that
we can define a conformally related Riemannian metric on M™ from a
conformally related metric f*g, on *M™. Clearly, f*g, is of constant curvature
1. Since §; = - ¢;-f, we have §7(f*g,) = f*-gF -f71*-f*g = f*-oFg = *8-
Therefore G is isometric with respect to f*g,, and hence f*g, is projectable on
M™,

Remark. So-called Yamabe’s theorem [17] is in doubt (cf. Aubin [2],
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Eliasson [4], Trudinger [16]). If it is true, it gives some important property
(iii) by Theorem C.

Proof of Theorem D. If the theorem is false, then the total scalar curvature
is nonpositive, and therefore by Lemma 5 we have a conformally related Rie-
mannian metric g* on (M™, g) such that the scalar curvature S* is nonpositive
and constant. However, this is impossible by Theorem A. Hence the theorem.

Remark. In Theorem D, “with finite fundamental group” is essential. In
fact, if N? is a compact 2-dimensional Riemannian manifold (with genus > 2)
of negative constant curvature, and M® is a Riemannian product manifold
N? x S, where §' is a circle, then M® is compact conformally flat and has
negative total scalar curvature.
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