COMPACT CONFORMALLY FLAT RIEMANNIAN MANIFOLDS

SHÛKICHI TANNO

1. Introduction

Sufficient conditions for a conformally flat Riemannian manifold to be a space of constant curvature were given by M. Tani [15] and S. I. Goldberg [5], etc. In this paper we study compact conformally flat Riemannian manifolds with finite fundamental group, and obtain the following theorems. Throughout this paper manifolds are assumed to be connected, of class C^{∞} , and of dimension $m \geq 3$.

Theorem A. Let (M^m, g) be a compact conformally flat Riemannian manifold with finite fundamental group. If the scalar curvature S of (M^m, g) is constant, then S is positive and (M^m, g) is of constant curvature.

If a complete Riemannian manifold (M^m, g) is of positive Ricci curvature $(\geq \varepsilon > 0)$, M^m is compact and has finite fundamental group (S. B. Myers [10]). Hence, as a natural consequence of Theorem A, we have M. Tani's theorem:

Corollary [15]. Let (M^m, g) be a compact orientable conformally flat Riemannian manifold. Then (M^m, g) is of constant curvature if its Ricci curvature is positive and scalar curvature is constant.

By $S^m(K)$ we denote a Euclidean m-sphere of constant curvature K.

Theorem B. Let (M^m, g) be a compact conformally flat Riemannian manifold with finite fundamental group and constant scalar curvature S. If (M^m, g) admits a nonisometric conformal transformation, then (M^m, g) is isometric to $S^m(K)$ where K = S/[m(m-1)].

It is well known that there are no harmonic p-forms for $0 on a compact orientable conformally flat Riemannian manifold <math>(M^m, g)$ of positive Ricci curvature; thus (M^m, g) is a rational homology sphere ([3], [9], see also [18, Theorem 4.1]). A more precise statement is as follows.

If a complete conformally flat Riemannian manifold (M^m, g) is of positive Ricci curvature $(\geq \varepsilon > 0)$, then the universal covering Riemannian manifold $({}^{\varepsilon}M^m, {}^{\varepsilon}g)$ of (M^m, g) is conformorphic to $S^m(1)$.

With respect to this we have

Theorem C. The following three are equivalent:

(i) On a compact conformally flat Riemannian manifold (M^m, g) with finite

Communicated by K. Yano, August 23, 1971.

fundamental group, we have a conformally related Riemannian metric g* of constant curvature.

- (ii) On a compact conformally flat Riemannian manifold (M^m, g) with finite fundamental group, we have a conformally related Riemannian metric g^* whose scalar curvature is constant.
- (iii) For a finite group $\{\varphi_0 = identity, \varphi_1, \dots, \varphi_{k-1}\}$ of conformal transformations acting on $S^m(1)$ without fixed point, there are a conformal transformation θ and isometries ϕ_i on $S^m(1)$ such that $\varphi_i = \theta^{-1} \cdot \phi_i \cdot \theta$, $i = 1, \dots, k-1$.

With respect to the integral of the scalar curvature, we have

Theorem D. Let (M^m, g) be a compact conformally flat Riemannian manifold with finite fundamental group. Then

$$\int_{\mathbf{R}} SdM > 0 ,$$

where dM denotes the volume element of $(M, {}^{m}g)$.

2. Proof of theorems

To prove our theorems we need to apply the following lemmas.

Lemma 1 (Kuiper [7]). A conformally flat simply connected Riemannian manifold (M^m, g) is conformorphic to an open submanifold of $S^m(1)$. In particular, if M^m is compact, then (M^m, g) is comformorphic to $S^m(1)$.

Lemma 2 (Obata [12, Theorem 1]). There is no conformal transformation between compact (M^m, g) of constant scalar curvature $S \ge 0$ and (M^m, g) of constant scalar curvature $S \le 0$ except for S = S = 0.

Lemma 3 (Obata [14, Proposition 6.1]). Let g_0 be the Riemannian metric of $S^m(1)$, and g^* another Riemannian metric on S^m conformal to g_0 . Then g^* has constant scalar curvature $S^* = m(m-1)$ if and only if g^* has constant curvature 1.

Lemma 4 (Nagano [11]). Let (M^m, g) , $m \ge 3$, be a complete Riemannian manifold with parallel Ricci tensor. If (M^m, g) admits a conformal transformation f, then one of the three cases occurs: (1) f is an isometry, (2) f is homothetic, and (M^m, g) is isometric to the Euclidean space, (3) (M^m, g) is isometric to $S^m(K)$.

Lemma 5 (Trudinger [14, Theorem 2, Corollary 1]). Let (M^m, g) be a compact Riemannian manifold with nonpositive total scalar curvature, i.e.,

$$\int_{\mathcal{M}} SdM \leq 0 ,$$

and $m \ge 3$. Then there is a conformally related Riemannian metric g^* whose scalar curvature is nonpositive and constant.

Proof of Theorem A. Let $({}^{4}M^{m}, {}^{4}g)$ be the universal covering Riemannian manifold of (M^{m}, g) . Since the fundamental group of M^{m} is finite, M^{m} is compact. Since by the hypothesis $({}^{4}M^{m}, {}^{4}g)$ has constant scalar curvature ${}^{4}S = S$, by Lemma 1 we have a conformal diffeomorphism f of $({}^{4}M^{m}, {}^{4}g)$ to $S^{m}(1)$, and therefore by Lemma 2 the scalar curvature S cannot be nonpositive. If we consider a homothetic deformation $g \to [S/(m(m-1))]g$, it follows that [S/(m(m-1))]g has constant scalar curvature m(m-1). Now define a Riemannian metric g^{*} on S^{m} by $g^{*} = [S/(m(m-1))]f^{-1**}g$. Then g^{*} is conformal to g_{0} and $S^{*} = m(m-1)$. By Lemma 3, g^{*} is of constant curvature 1, so that ${}^{4}g$ and hence g are of constant curvature S/[m(m-1)].

Proof of Theorem B. By S we denote the scalar curvature of (M^m, g) . Then (M^m, g) is of positive constant curvature K = S/[m(m-1)] by Theorem A, and is isometric to $S^m(K)$ by Lemma 4.

Proof of Theorem C. (i) \Rightarrow (ii) is obvious.

We prove (ii) \Rightarrow (iii). Let $G = \{\varphi_0, \varphi_1, \dots, \varphi_{k-1}\}$ be a finite group of conformal transformations on $S^m(1)$ acting without fixed point. Since G is a compact group, we have a conformally related Riemannian metric g' such that G is isometric with respect to g' (cf. Ishihara [6], more precisely, $(g')_x = [g_x + (\varphi_1^* g)_x + \dots + (\varphi_{k-1}^*)_x]/k$, $x \in S^m$). (S^m, g') is factorized by G and we get a Riemannian manifold (M^m, g') . Denote the projection by π . Because (M^m, g') is compact conformally flat with finite fundamental group, by (ii) we have a conformally related Riemannian metric g^* whose scalar curvature S^* is constant, so that we can assume that $S^* = m(m-1)$. Denoting $\pi^* g^*$ by g^* again, (S^m, g^*) is the universal covering Riemannian manifold of (M^m, g^*) . Since φ_i induces an isometry φ_i^* of (S^m, g^*) , $\theta': x \in (S^m, g') \to x \in (S^m, g^*)$ is a conformal transformation, and therefore $\theta'': (S^m, g_0) \to (S^m, g') \to (S^m, g^*)$ is also so. Thus we have $\varphi_i = \theta''^{-1} \cdot \varphi_i^* \cdot \theta''$, $i = 1, \dots, k-1$. By Lemma 3, (S^m, g^*) is of constant curvature 1. Hence we obtain an isometry $\gamma: (S^m, g^*) \to (S^m, g_0)$. Putting $\theta = \gamma \cdot \theta''$ and $\phi_i = \gamma \cdot \varphi_i^* \cdot \gamma^{-1}$, we have $\varphi_i = \theta^{-1} \cdot \phi_i \cdot \theta$.

Finally we prove (iii) \Rightarrow (i). Let (M^m, g) be a compact conformally flat Riemannian manifold with finite fundamental group G, and $({}^*M^m, {}^*g)$ its universal covering Riemannian manifold. Then we have a conformal transformation f' of $({}^*M^m, {}^*g)$ to $S^m(1)$. Let $\xi_i \in G$ be a covering transformation, and put $\varphi_i' = f' \cdot \xi_i \cdot f'^{-1}$. Then φ_i' is conformal with respect to g_0 on $S^m(1)$. By (iii) we have a conformal transformation θ and isometries ϕ_i on $S^m(1)$ such that $\varphi_i' = \theta^{-1} \cdot \phi_i \cdot \theta$ for $i = 1, \dots, k-1$. Thus by defining φ_i by $f \cdot \xi_i \cdot f^{-1}$ for $f = \theta \cdot f'$, we obtain $\varphi_i = f \cdot \xi_i \cdot f^{-1} = \theta \cdot \varphi_i' \cdot \theta^{-1} = \phi_i = \text{isometry}$. Now we show that we can define a conformally related Riemannian metric on M^m from a conformally related metric f^*g_0 on f^*M^m . Clearly, f^*g_0 is of constant curvature 1. Since $\xi_i = f^{-1} \cdot \phi_i \cdot f$, we have $\xi_i^*(f^*g_0) = f^* \cdot \phi_i^* \cdot f^{-1*} \cdot f^*g_0 = f^* \cdot \phi_i^*g_0 = f^*g_0$. Therefore G is isometric with respect to f^*g_0 , and hence f^*g_0 is projectable on M^m .

Remark. So-called Yamabe's theorem [17] is in doubt (cf. Aubin [2],

Eliasson [4], Trudinger [16]). If it is true, it gives some important property (iii) by Theorem C.

Proof of Theorem D. If the theorem is false, then the total scalar curvature is nonpositive, and therefore by Lemma 5 we have a conformally related Riemannian metric g^* on (M^m, g) such that the scalar curvature S^* is nonpositive and constant. However, this is impossible by Theorem A. Hence the theorem.

Remark. In Theorem D, "with finite fundamental group" is essential. In fact, if N^2 is a compact 2-dimensional Riemannian manifold (with genus ≥ 2) of negative constant curvature, and M^3 is a Riemannian product manifold $N^2 \times S^1$, where S^1 is a circle, then M^3 is compact conformally flat and has negative total scalar curvature.

References

- [1] T. Aubin, Sur la courbure scalaire des variétés riemanniennes compactes, C. R. Acad. Sci. Paris 262 (1966) 130-133.
- [2] —, Sur la courbure scalaire des variété riemanniennes compactes, C. R. Acad. Sci. Paris 266 (1968) 69-70.
- [3] S. Bochner, Curvature and Betti numbers, Ann. of Math. 49 (1948) 379-390.
- [4] H. I. Eliasson, On variations of metrics, Math. Scand. 29 (1971) 317-327.
- [5] S. I. Goldberg, On conformally flat spaces with definite Ricci curvature, Ködai Math. Sem. Rep. 21 (1969) 226-232.
- [6] S. Ishihara, Groups of projective transformations and groups of conformal transformations, J. Math. Soc. Japan 9 (1957) 195-227.
- [7] N. H. Kuiper, On conformally flat spaces in the large, Ann. of Math. 50 (1949) 916-924.
- [8] R. S. Kulkarni, Curvature structures and conformal transformations, J. Differential Geometry 4 (1969) 425-451.
- [9] A. Lichnerowicz, Courbure et nombres de Betti d'une variété riemannienne compacte, C. R. Acad. Sci. Paris 226 (1948) 1678-1680.
- [10] S. B. Myers, Riemannian manifolds with positive mean curvature, Duke Math. J. 8 (1941) 401-404.
- [11] T. Nagano, The conformal transformation on a space with parallel Ricci tensor, J. Math. Soc. Japan 11 (1959) 10-14.
- [12] M. Obata, Conformal transformations of compact Riemannian manifolds, Illinois J. Math. 6 (1962) 292-295.
- [13] —, Conformally flat Riemannian manifolds admitting a one-parameter group of conformal transformations, J. Differential Geometry 4 (1970) 335-337.
- [14] —, The conjectures on conformal transformations of compact Riemannian manifolds, J. Differential Geometry 6 (1971) 247-258.
- [15] M. Tani, On conformally flat Riemannian space with positive Ricci curvature Tôhoku Math. J. 19 (1967) 227-231.
- [16] N. S. Trudinger, Remarks concerning the conformal deformation of Riemannian structures on compact manifolds, Ann. Scuola Norm. Sup. Pisa 22 (1968) 265-274.
- [17] H. Yamabe, On a deformation of Riemannian structures on compact manifolds, Osaka Math. J. 12 (1960) 21-37.
- [18] K. Yano & S. Bochner, Curvature and Betti numbers, Annals of Math. Studies, No. 32, Princeton University Press, Princeton, 1953.

Tôhoku University